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Abstract. Let G be a graph, and let 1 and f be two integer-valued functions defined on V(G) satisfying
a ≤ 1(x) ≤ f (x)− r ≤ b− r for any x ∈ V(G), where a, b and r be three nonnegative integers with 1 ≤ a ≤ b− r.
In this paper, we verify that G contains a fractional (1, f )-factor if its connectivity κ(G) and independence

number α(G) satisfy κ(G) ≥ max
{

(b + 1)(b − r + 1)
2

,
(b − r + 1)2α(G)

4(a + r)

}
. The result is best possible in some

sense.

1. Introduction

It is well known that fractional factor problem has wide-range applications in areas such as network
design, scheduling and combinatorial polyhedra. For motivation and background to this work, we refer
the readers to [12].

In this paper, we consider only finite undirected graphs without loops or multiple edges. Let G be a
graph. We denote by V(G) and E(G) its vertex set and edge set. For any x ∈ V(G), we use dG(x) to denote
the degree of x in G and NG(x) to denote the set of vertices adjacent to x in G and write NG[x] = NG(x)∪ {x}.
For any S ⊆ V(G), we write NG(S) =

⋃
x∈S NG(x), use G[S] to denote the subgraph of G induced by S and

G − S = G[V(G) \ S]. A vertex subset S of G is called independent if G[S] has no edges. Given two disjoint
subsets A,B of V(G), we write eG(A,B) for the number of edges in G joining a vertex in A to that in B. We
use δ(G), α(G) and κ(G) to denote the minimum degree, the independence number and the connectivity of
G, respectively.

Let 1 and f be two nonnegative integer-valued functions defined on V(G) such that 1(x) ≤ f (x) for every
x ∈ V(G). A spanning subgraph F of G satisfying 1(x) ≤ dF(x) ≤ f (x) for every x ∈ V(G) is a (1, f )-factor of
G. Let h : E(G) → [0, 1] be a function defined on E(G). If 1(x) ≤

∑
e3x h(e) ≤ f (x) holds for every x ∈ V(G),

then we call G[Fh] a fractional (1, f )-factor of G with indicator function h, where Fh = {e : e ∈ E(G), h(e) > 0}.
A fractional ( f , f )-factor is called simply a fractional f -factor. If f (x) = k, then a fractional f -factor is called
a fractional k-factor.
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Many authors have investigated graph factors [1–6, 10, 11, 14] and fractional factors [7–9, 12, 13, 15], but
only few results are obtained for the existence of graph factors or fractional factors involving the independent
number and the connectivity. In this paper, we study the relationship between the independent number, the
connectivity and the fractional (1, f )-factors in graphs, and obtain an independent number and connectivity
condition for the existence of the fractional (1, f )-factors in graphs. Our main result will be given in the
following section.

2. Main Result

We first show the main result in this paper.

Theorem 2.1. Let G be a graph, and let a, b and r be three nonnegative integers satisfying 1 ≤ a ≤ b − r, and let 1, f
be two integer-valued functions defined on V(G) with a ≤ 1(x) ≤ f (x) − r ≤ b − r for every x ∈ V(G). If

κ(G) ≥ max
{

(b + 1)(b − r + 1)
2

,
(b − r + 1)2α(G)

4(a + r)

}
,

then G contains a fractional (1, f )-factor.

If r = 0 in Theorem 2.1, then we obtain the following corollary.

Corollary 2.2. Let G be a graph, and let a, b be two integers satisfying 1 ≤ a ≤ b, and let 1, f be two integer-valued
functions defined on V(G) with a ≤ 1(x) ≤ f (x) ≤ b for every x ∈ V(G). If

κ(G) ≥ max
{

(b + 1)2

2
,

(b + 1)2α(G)
4a

}
,

then G admits a fractional (1, f )-factor.

If 1(x) ≡ f (x) in Corollary 2.2, then we get the following corollary.

Corollary 2.3. Let G be a graph, and let a, b be two integers satisfying 1 ≤ a ≤ b, and let f be an integer-valued
function defined on V(G) with a ≤ f (x) ≤ b for every x ∈ V(G). If

κ(G) ≥ max
{

(b + 1)2

2
,

(b + 1)2α(G)
4a

}
,

then G have a fractional f -factor.

If a = b = k in Corollary 2.3, then we have the following corollary.

Corollary 2.4. Let G be a graph, and let k be an integer with k ≥ 1. If

κ(G) ≥ max
{

(k + 1)2

2
,

(k + 1)2α(G)
4k

}
,

then G have a fractional k-factor.

3. The Proof of Theorem 2.1

We first show a necessary and sufficient condition for a graph to have a fractional (1, f )-factor obtained
by Liu and Zhang [7], which plays an important role in the proof of Theorem 2.1.

Theorem 3.1. ([7]). Let G be a graph. Then G has a fractional (1, f )-factor if and only if for every subset S of V(G),

δG(S,T) = f (S) + dG−S(T) − 1(T) ≥ 0,

where T = {x : x ∈ V(G) \ S, dG−S(x) ≤ 1(x)}.
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Proof of Theorem 2.1. We prove Theorem 2.1 by contradiction. Suppose that G satisfies the assumption
of Theorem 2.1, but it has no fractional (1, f )-factor. Then using Theorem 3.1, there exists some subset S of
V(G) satisfying

δG(S,T) = f (S) + dG−S(T) − 1(T) ≤ −1, (1)

where T = {x : x ∈ V(G) \ S, dG−S(x) ≤ 1(x)}. Obviously, T , ∅ by (1).
We present the following partition of T: we choose x1 ∈ T with dG[T](x1) = δ(G[T]). Let D1 = NG[x1] ∩ T

and T1 = T. If T −
⋃

1≤ j<i
D j , ∅ for i ≥ 2, then we write Ti = T −

⋃
1≤ j<i

D j. In the following, we take xi ∈ Ti

with dG[Ti](xi) = δ(G[Ti]) and Di = NG[xi] ∩ Ti. We continue these procedures until we reach the situation
in which Ti = ∅ for some i, say for i = s + 1. It follows from the above definition that {x1, x2, · · · , xs} is an
independent set of G.

Note that T , ∅. Hence, we have s ≥ 1. Set |Di| = di, we obtain |T| =
∑

1≤i≤s
di. We write U = V(G) \ (S ∪ T)

and κ(G − S) = t. Now, we verify the following claims.
Claim 1. s , 1 or U , ∅.
Proof. Assume that s = 1 and U = ∅. Then by (1) and our choice of x1, we obtain

−1 ≥ δG(S,T) = f (S) + dG−S(T) − 1(T) ≥ (a + r)|S| + dG−S(T) − (b − r)|T|
= (a + r)|S| + d1(d1 − 1) − (b − r)d1

that is,

|S| ≤
−d2

1 + (b − r + 1)d1 − 1

a + r
. (2)

In terms of (2), we have

|V(G)| = |S| + d1 ≤
−d2

1 + (b − r + 1)d1 − 1

a + r
+ d1 =

−d2
1 + (a + b + 1)d1 − 1

a + r

≤
(a + b + 1)2

− 4
4(a + r)

≤
(b + 1)(b − r + 1)

2
.

Combining this with the hypothesis of Theorem 2.1, we obtain

(b + 1)(b − r + 1)
2

≥ |V(G)| > κ(G) ≥
(b + 1)(b − r + 1)

2
,

which is a contradiction. The proof of Claim 1 is complete. �
Claim 2. dG−S(T) ≥

∑
1≤i≤s

di(di − 1) + st
2 .

Proof. According to the choice of xi, we have∑
1≤i≤s

(
∑
x∈Di

dG[Ti](x)) ≥
∑

1≤i≤s

di(di − 1). (3)

For the left-hand side of (3), an edge joining x ∈ Di and y ∈ D j (i < j) is counted only once, that is to say, it
is counted in dG[Ti](x) but not in dG[T j](y). Thus, we obtain

dG−S(T) ≥
∑

1≤i≤s

di(di − 1) +
∑

1≤i< j≤s

eG(Di,D j) + eG(T,U). (4)

According to κ(G − S) = t and Claim 1, we have

eG(Di,
⋃
j,i

D j) + eG(Di,U) ≥ t (5)
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for all Di (1 ≤ i ≤ s). It follows from (5) that∑
1≤i≤s

(eG(Di,
⋃
j,i

D j) + eG(Di,U)) = 2
∑

1≤i< j≤s

eG(Di,D j) + eG(T,U) ≥ st,

which implies ∑
1≤i< j≤s

eG(Di,D j) + eG(T,U) ≥
st
2
.

Combining this with (4), we obtain

dG−S(T) ≥
∑

1≤i≤s

di(di − 1) +
st
2
.

This completes the proof of Claim 2. �

It is easy to see that d2
i − (b − r + 1)di ≥ −

(b − r + 1)2

4
. Combining this with |T| =

∑
1≤i≤s

di and Claim 2, we

have

δG(S,T) = f (S) + dG−S(T) − 1(T) ≥ (a + r)|S| +
∑

1≤i≤s

di(di − 1) +
st
2
− (b − r)|T|

= (a + r)|S| +
∑

1≤i≤s

di(di − 1) +
st
2
− (b − r)

∑
1≤i≤s

di

= (a + r)|S| +
∑

1≤i≤s

(d2
i − (b − r + 1)di) +

st
2

≥ (a + r)|S| −
(b − r + 1)2s

4
+

st
2
,

that is,

δG(S,T) ≥ (a + r)|S| −
(b − r + 1)2s

4
+

st
2
. (6)

Claim 3. − (b−r+1)2

4 + t
2 < 0.

Proof. If − (b−r+1)2

4 + t
2 ≥ 0, then by (6), s ≥ 1 and |S| ≥ 0, we obtain

δG(S,T) ≥ (a + r)|S| −
(b − r + 1)2s

4
+

st
2
≥ 0,

which contradicts (1). The proof of Claim 3 is complete. �
Note that α(G) ≥ α(G[T]) ≥ s and κ(G) ≤ |S| + κ(G − S) = |S| + t. Combining these with (1), (6), Claim 3

and the condition κ(G) ≥ max
{

(b + 1)(b − r + 1)
2

,
(b − r + 1)2α(G)

4(a + r)

}
of Theorem 2.1, we have

−1 ≥ δG(S,T) ≥ (a + r)|S| −
(b − r + 1)2s

4
+

st
2

= (a + r)|S| + (−
(b − r + 1)2

4
+

t
2

)s

≥ (a + r)(κ(G) − t) + (−
(b − r + 1)2

4
+

t
2

)α(G)

≥ (a + r)(κ(G) − t) + (−
(b − r + 1)2

4
+

t
2

) ·
4(a + r)κ(G)
(b − r + 1)2

= (a + r)t(
2κ(G)

(b − r + 1)2 − 1) ≥ 0,

which is a contradiction. This completes the proof of Theorem 2.1. �
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4. Remark

We show that the condition

κ(G) ≥
(b − r + 1)2α(G)

4(a + r)
=

( b−r+1
2 )2α(G)
a + r

in Theorem 2.1 is sharp by constructing a graph G = K ( b−r+1
2 )2s−1

a+r

∨
(sK b−r+1

2
), where a, b, r are three nonnegative

integers with 1 ≤ a = b − r, s is a sufficiently large integer, b−r+1
2 and ( b−r+1

2 )2s−1
a+r are two integers. It is easy

to see that α(G) = s and κ(G) =
( b−r+1

2 )2s−1
a+r =

( b−r+1
2 )2α(G)−1

a+r . Let 1 and f be two functions defined on V(G) with
1(x) ≡ a and f (x) ≡ b. In the following, we prove that G has no fractional (1, f )-factor.

We take S = V

K ( b−r+1
2 )2

s−1

a+r

 and T = V
(
sK b−r+1

2

)
. Note that a = b − r. Thus, we have

δG(S,T) = f (S) + dG−S(T) − 1(T) = b|S| + dG−S(T) − a|T|

= b ·
( b−r+1

2 )2s − 1
a + r

+
(b − r + 1)s

2
·

(
b − r + 1

2
− 1

)
− a ·

(b − r + 1)s
2

=

(
b − r + 1

2

)2

s − 1 −
(b − r + 1)s

2
·

(
b − r −

b − r + 1
2

+ 1
)

= −1 < 0.

Then using Theorem 3.1, G has no fractional (1, f )-factor.
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